Search This Blog

Friday, November 2, 2012

On Polling Models, Skewed & Unskewed | RedState

On Polling Models, Skewed & Unskewed | RedState

“A page of history is worth a volume of logic”
Oliver Wendell Holmes
Mathematical models are all the rage these days, but you need to start with the most basic of facts: a model is only as good as the underlying data, and that data comes in two varieties: (1) actual raw data about the current and recent past, and (2) historical evidence from which the future is projected from the raw data, on the assumption that the future will behave like the past. Consider the models under closest scrutiny right now: weather models such as hurricane models. These are the best kind of model, in the sense that the raw data is derived from intensive real-time observation and the historical data is derived from a huge number of observations and thus not dependent on a tiny and potentially unrepresentative sample.
Yet, as you watch any storm develop, you see its projected path change, sometimes dramatically. Why? Because the models are highly sensitive to changes in raw data, and because storms are dynamic systems: their path follows a certain logic, but does not track a wholly predictable trajectory. The constant adjustments made to weather models ought to give us a little more humility in dealing with models that suffer from greater flaws in raw data observations, smaller sample sizes in their bases of historical data, or that purport to explain even more complex or dynamic systems – models like climate modeling, financial market forecasts, economic and budgetary forecasting, or the behavior of voters. Yet somehow, liberals in particular seem so enamored of such models that they decry any skepticism of their projections as a “War on Objectivity,” in the words of Paul Krugman. Conservatives get labeled “climate deniers” or “poll deniers” (by the likes of Tom Jensen of PPPMarkos Moulitsas,Jonathan Chait and the American Prospect) or, in the case of disagreeing with budgetary forecasts that aren’t really even forecasts, “liars.” But if history teaches us anything, it’s that the more abuse that’s directed towards skeptics, the greater the need for someone to play Socrates.
Consider an argument Michael Lewis makes in his book The Big Short: nearly everybody involved in the mortgage-backed securities market (buy-side, sell-side, ratings agencies, regulators) bought into mathematical models valuing MBS as low-risk based on models whose historical data didn’t go back far enough to capture a collapse in housing prices. And it was precisely such a collapse that destroyed all the assumptions on which the models rested. But the people who saw the collapse coming weren’t people who built better models; they were people who questioned the assumptions in the existing models and figured out how dependent they were on those unquestioned assumptions. Something similar is what I believe is going on today with poll averages and the polling models on which they are based. The 2008 electorate that put Barack Obama in the White House is the 2005 housing market, the Dow 36,000 of politics. And any model that directly or indirectly assumes its continuation in 2012 is – no matter how diligently applied – combining bad raw data with a flawed reading of the historical evidence.


No comments:

Post a Comment